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Fig. 1: An overview of the overall method: From left to right: Volumetric segmented data represented in slice-wise
view, the extracted mid-polylines from the data, the triangular surface generated from mid-polylines, and a use case of
the mid-surface with the modeling results visualized over the extracted mid-surface mesh.

ABSTRACT

In the field of volumetric data processing and analysis, extracting mid-surfaces from thinly bounded
compartments is crucial for tasks such as surface area estimation and accurate modeling of biological
structures, yet it has lacked a standardized approach. To bridge this gap, we introduce MidSurfer–a
novel parameter-free method for extracting mid-surfaces from segmented volumetric data. Our
method produces smooth, uniformly triangulated meshes that accurately capture the structural
features of interest. The process begins with the Ridge Field Transformation step that transforms the
segmented input data, followed by the Mid-Polyline Extraction Algorithm that works on individual
volume slices. Based on the connectivity of components, this step can result in either single or
multiple polyline segments that represent the structural features. These segments form a coherent
series across the volume, creating a backbone of regularly distributed points on each slice that
represents the mid-surface. Subsequently, we employ a Polyline Zipper Algorithm for triangulation
that connects these polyline segments across neighboring slices, yielding a detailed triangulated
mid-surface mesh. Our findings demonstrate that this method surpasses previous techniques in
versatility, simplicity of use, and accuracy. Our approach is now publicly available as a plugin for
ParaView, a widely-used multi-platform tool for data analysis and visualization, and can be found at
(https://github.com/kaust-vislab/MidSurfer).

Keywords Mid-Surface · Biomedical Visualization · Volumetric Data · Biological Structures · Parameter-Free · Surface
Meshing
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1 Introduction

In the exploration of biological structures, the visualization and analysis of surfaces play a crucial role in understanding
complex biological phenomena. In particular, the study of thinly bounded compartments, such as cells and their
organelles bounded with membranes, requires precise surface representation for accurate analysis since membranes
serve as interfaces for various cellular components such as cell membranes, protein-protein interfaces, organelle
junctions, and cell-extracellular matrix contacts. Membranes govern molecular exchange, cellular communication, and
intracellular transport, thereby shaping cellular function and organization. These structures, often explored through
volumetric microscopy data (obtained using cryogenic electron tomography (cryo-ET), focused ion beam-scanning
electron microscopy (FIB-SEM), or some other acquisition method), contain rich details critical for various biological
research and applications. However, the extraction and analysis of surfaces from such data pose significant challenges
due to the intricate nature of biological structures and the limitations of existing approaches.

The mid-surface concept [1] serves as a crucial tool in this context, effectively bridging the divide between raw
volumetric data and a meaningful geometric representation of biological structures. Broadly defined, a mid-surface [2, 3]
is a surface model that captures the structure’s geometric essence by depicting its median or central layer, which
is equidistant from the object’s inner and outer surfaces. This model is invaluable for analyzing thinly bounded
compartments, offering a well-balanced and precise surface for subsequent analysis. Notably, the mid-surface, situated
between the inner and outer leaflets of the lipid bilayer, is of particular importance for understanding membrane structure
and various cellular functions, such as membrane fluidity, protein localization, and cell signaling.

Distinguishing between mid-surfaces, medial surfaces [4], and isosurfaces [5], illustrated in Fig. 2, is crucial, as these
concepts, while often related, serve distinct purposes in volumetric data analysis. Mid-surfaces are designed to represent
the central geometry of thinly bounded spaces, capturing the essence of an object’s median layer. Medial surfaces,
in contrast, focus on the geometric and topological core of a shape, essentially forming its skeleton. Isosurfaces,
meanwhile, are defined by extracting surfaces that represent a constant value within a scalar field, a technique commonly
employed in volume rendering. Additionally, the concept of outer surfaces [6, 7, 8], including molecular surfaces [9]
and membrane surfaces [10], plays a significant role in various analysis scenarios. Among these, mid-surfaces are
particularly advantageous for the detailed analysis of biological structures due to their unique ability to accurately
represent the median geometry. However, it is noteworthy that, to the best of our knowledge, the scientific literature
primarily mentions a single approach [1] for extracting mid-surfaces, which necessitates adjusting multiple parameters
to achieve the desired outcome. Other methods for extracting similar surfaces, as discussed in section 2, are either not
fit for purpose or fail to ensure the topological integrity of a manifold with a boundary.

In biological research, precise surface representation is critical for analyzing and modeling cellular compartments,
necessitating new surface extraction methods. Traditional approaches often fall short in capturing the intricate details
required for thorough biological analyses, particularly from volumetric microscopy data. The mid-surface concept,
representing the median layer of an object and providing an accurate model for thinly bounded structures, emerges as a
solution. However, the literature indicates a significant gap: a standardized, parameter-free method for mid-surface
extraction is notably absent, with existing methods requiring manual parameter adjustments and often failing to maintain
topological integrity. This gap underscores the need for an innovative approach that combines accuracy with usability in
extracting mid-surfaces from biological data. Our work addresses this necessity, proposing a novel, efficient method
that enhances the geometric representation of biological structures, thereby facilitating a deeper understanding of their
complex functions.

The key contributions of the presented method include:

• Introducing a novel, parameter-free, and robust method for extracting the mid-surface from segmented
volumetric data.

• Representing the mid-surface in the form of a high-quality triangular surface mesh, while considering the
standard mesh quality metrics.

• Evaluating the method across multiple datasets, demonstrating significant improvements over existing alterna-
tives. Additionally, showcasing its efficacy in two structural biology use cases, including quantitative analysis
with surface morphometrics and mid-surface modeling.

• Making our algorithm publicly available as a plugin in ParaView1, an open-source visualization tool, thereby
providing accessible functionality to a wide range of users, from novices to experts.

1https://www.paraview.org
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CBA

Fig. 2: Comparative illustration of (A) isosurfaces, (B) medial surfaces, and (C) mid-surfaces to emphasize the unique
advantages of mid-surfaces in capturing the median geometry. The segmentation is shown in light green color and the
respective surfaces with a thick black line.

2 Related Work

In 3D modeling, surfaces serve as foundational structures across various applications, facilitating the attainment of
desired final shapes. These surfaces may be manually crafted by users or algorithmically extracted from reference
data, encompassing a wide array of geometric representations, including meshes, point clouds, and volumetric data.
Historically, numerous approaches for surface extraction have been developed, primarily influenced by the nature of the
input data. However, it’s imperative to approach these methods with flexibility, as input data can often be converted
among different formats with high precision. Consequently, we review related works capable of processing various
types of input data.

Point cloud data, one of the prevalent forms of representation, poses unique challenges and opportunities for surface
reconstruction. The goal is either to fit a surface that encompasses all points or to devise a surface model that optimally
represents the point cloud. Pioneering contributions in this area were made by Hoppe et al. [11, 12], who introduced
innovative techniques for the surface approximation of unorganized point sets. Boissonnat and Cazals [13] offered a
method for smooth surface reconstruction from arbitrary point distributions using Natural Neighbour interpolation
of the distance function. Approaches to simplify surfaces derived from unstructured point clouds were advanced by
Pauly et al. [14, 15]. Subsequent research introduced methods for fitting smooth surfaces to arbitrary shapes using
moving least squares combined with local mappings or other features [16, 17, 18, 19], with further developments aimed
at preserving sharp features [20, 21, 22]. Ohtake et al. [23] demonstrated surface fitting excellence using multi-level
partitioning of unity implicits. The advent of deep neural networks has also made a significant impact on surface
reconstruction, achieving remarkable outcomes. Williams et al. [24] explored the use of deep neural networks as
a geometric prior in this context, while Boulch and Marlet [25] tackled the scalability challenges inherent in deep
learning-based surface reconstruction techniques. Comprehensive reviews of these advancements are documented in
survey papers by Berger et al. [26] and Huang et al. [27].

It is worth noting that many of the above-mentioned methods are adaptable to volumetric data through a straightforward
conversion of volumes to point clouds, as illustrated by some approaches, including [23], which demonstrate promising
results. However, these techniques are primarily designed for unstructured data, contrasting with the highly regular
data characteristic of our use cases. By leveraging the regularity inherent in our datasets, our method achieves greater
efficiency and alignment with our specific requirements.

While point cloud data is frequently associated with surface reconstruction, the challenges inherent in working with
volumetric data stem from its continuous representation of structures. Unlike point clouds, where the goal is often to
reconstruct discrete surfaces or a collection of interconnected surfaces, volumetric data requires an initial determination
of what constitutes a surface within the volume. Typically, this classification divides surfaces into three primary
categories as illustrated in Fig. 2: (1) isosurfaces [5], which delineate boundaries within volumes of uniform value; (2)
medial surfaces [28] (also known as medial axes), representing the structural skeleton; and (3) mid-surfaces, situated
equidistantly between two boundary surfaces, such as isosurfaces or the edges of a segmented region. Our research
primarily addresses the latter category, though we acknowledge key contributions to the former two due to their
relevance and impact on our work.

The Marching Cubes algorithm [29], celebrated for its simplicity and efficiency, remains the quintessential method for
isosurface extraction, leveraging linear interpolation along voxel edges. Subsequent attempts to resolve its ambiguities
or improve upon its drawbacks, such as those by [30, 31], have not supplanted it, often due to increased complex-
ity and reduced performance. Efforts to generate closed and oriented surfaces through valid triangulation include
Guzetic et al.’s [32] tetrahedral decomposition-based method. Livnat et al. [33] proposed a near-optimal isosurface
extraction technique for both structured and unstructured grids using span space representation. Wood et al. [34]
introduced an approach tailored for distance volumes, beginning with a coarse mesh extraction that is refined via a
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multiscale force-based solver to achieve a semi-regular mesh with adaptive geometric sampling. To mitigate volume
sampling aliasing, Kobbelt et al. [35] developed a feature-sensitive surface extraction method that preserves the simplic-
ity of Marching Cubes. Ju et al. [36] presented an efficient, real-time capable octree-based approach utilizing Hermite
contouring, which does not necessitate the explicit identification and processing of specific features. Addressing the
precision required for medical surface extractions, Kim et al. [37] demonstrated an approach using a Laplacian map,
particularly for extracting cortical surfaces in the human brain. The advent of differentiable methods for isosurface
extraction, aimed at facilitating rapid optimization with physically informed neural networks, led to novel approaches
like that of Remelli et al. [38], which employs Deep Signed Distance Functions for explicit surface mesh representation,
demonstrated in single-view reconstructions and physically-driven shape optimization.

Although the methods described above do not directly address our specific challenges, theoretically, our problem could
be reformulated as an isosurface extraction task in some specific scenarios. However, this is not applicable to many of
our cases due to the complexity of the structures we aim to address.

Medial surfaces, often depicted through medial meshes [39], encapsulate an object’s core geometric and topological
features [40]. Yet, in the context of our work, medial surfaces prove inadequate due to the complexity of the structures
we examine. The skeletons of these complex structures are typically branched and fail to provide a practical foundation
for mesoscale modeling.

This limitation underscores the necessity for a mid-surface representation [2], a concept widely applied in fields such as
engineering and finite element analysis [41], as well as structural biology, as highlighted by Barad et al. [1]. In contrast
to isosurfaces, which excel in depicting uniform structures by showcasing constant values or medial surfaces that reduce
shapes to their skeletal essence, mid-surfaces uniquely capture the median layer situated between two boundaries. This
distinct trait renders mid-surfaces particularly adept for the detailed geometric exploration of thinly bounded structures.

Barad et al.’s approach employs a mid-surface morphometrics pipeline alongside meshing techniques to model and
quantify various metrics, including curvature and distances within and between surfaces, in addition to orientation
differences. Their methodology integrates several existing techniques, each with specific input parameters to yield
optimal outcomes. They adopted a semi-automated algorithm [42] for segmenting cellular membranes from cryo-ET
data, followed by the use of screened Poisson Surface Reconstruction (PSR) [43] for mesh generation. While PSR
effectively transforms membrane voxel segmentations or point clouds into implicit surface meshes, there’s a notable
risk of geometrical fidelity loss and the obliteration of sharp features and voids unless input parameters are meticulously
chosen. Despite these challenges, the quantitative findings of Barad et al.provide a robust solution to a complex
problem. Nonetheless, the quest for optimal parameter settings remains daunting. Their investigations further highlight
the demand for more automated, parameter-free, and structurally reliable methods for mid-surface extraction—our
research’s primary aim.

In one phase of our method, we employ a technique to seamlessly merge parallel contours into a unified mesh
representation, a process known as zippering, the Zipper algorithm, or contour stitching. Various strategies for
addressing this challenge in a broader context have been documented in prior works [5, 44, 45]. Our approach is
particularly influenced by the method developed by Turk and Levoy [46], who presented the method for the creation
of zippered polygon meshes. Their algorithm focuses on amalgamating multiple mesh fragments obtained from
different viewpoints into a cohesive mesh that represents a singular object. Unlike their mesh-to-mesh algorithm, our
implementation is tailored to converting stacked polylines into mesh structures. Furthermore, our method innovatively
incorporates new triangles to facilitate connections between these structures—a modification not explicitly required in
Turk and Levoy’s original formulation. It is also worth noting the existence of Zipper [47], which introduces a mesh
data structure aimed at efficient mesh representation. However, this does not directly pertain to the mesh generation.

Another phase of our method extracts mid-polylines from individual slices, a problem that is closely related to ridge
extraction as presented by Furst et al. [48] and by Furst and Pizer with Marching Ridges [49], where ridges are defined
as level sets of first derivatives of the input function. This has been subsequently used, e.g., by Sadlo and Peikert [50]
for visualizing Lagrangian coherent structures extracted as ridges from FTLE fields, and Kindlmann et al. [51] for
identifying white matter structures in Diffusion Tensor MRI.

3 Method

Our method processes binary segmentations of volumetric data to derive mid-surfaces from individually segmented
structures. Two critical definitions underpin our approach:

4



MidSurfer: Mid-Surface Extraction from Segmented Volumetric Data A PREPRINT

RIDGE FIELD TRANSFORMATION

POLYLINE ZIPPER ALGORITHM

MID-POLYLINE 
EXTRACTION ALGORITHM

segmentation 
volume ridge line height 

field volume

mid-polylines

mid-surface

slic
es

3.2

3.3

3.4

Fig. 3: Schematic overview of the Mid-surface Extraction Algorithm, showing steps from Ridge Field Transformation
(Sec. 3.2) that transforms the binary segmentation data; through the Mid-Polyline Extraction Algorithm (Sec. 3.3 that
extracts the mid-polylines from slices; to the final mesh generation using the Polyline Zipper Algorithm (Sec. 3.4).

Mid-polyline is defined as a series of straight line segments that lie precisely midway between the inner and outer
boundaries of a segmentation, confined to a single slice. This principle underlies the Mid-polyline Extraction Algorithm
detailed in Sec. 3.3, serving as its foundational concept.

Mid-surface is conceptualized as a two-dimensional manifold centrally embedded within a three-dimensional
structure, equidistant from the structure’s inner and outer surfaces. The transformation from mid-polylines to cohesive
mid-surfaces is achieved through our Polyline Zipper Algorithm, streamlining the construction of the desired surfaces.

3.1 Method Overview

Fig. 3 illustrates the overall pipeline, encompassing three key modules detailed in the subsequent subsections. The
overarching goal is to accurately extract a mid-surface from volumetric data and represent it as a triangular surface mesh.
This mesh is constructed by triangulating a set of horizontally aligned mid-polylines (Sec. 3.4). These mid-polylines
are derived from segmented volumetric data (Sec. 3.3). The volumetric data is analyzed slice-by-slice, with each slice
yielding mid-polylines at its specific level. When the segmentation within a slice is continuous, it results in a single,
seamless mid-polyline. Conversely, discontinuities in the segmentation lead to fragmented mid-polyline segments
at that level. To derive a mid-polyline from a given slice, we first convert the binary, cliff-like segmentation into a
gradient, hill-range-like height field with a ridge in the center that we term a ridge line height field (Sec. 3.2). This
conversion process emphasizes symmetry to guarantee the central ridge line accurately delineates the mid-polyline.

5
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The symmetry of the transformation ensures the extracted ridge line precisely embodies the mid-polyline’s path. We
initiate the extraction process by identifying the highest point on the ridge line height field, which serves as our starting
position. From there, the method proceeds in the ridge’s direction, which aligns with the direction of minimal curvature.
This determination is based on the analysis of the Hessian matrix, which compiles the second-order derivatives for each
pixel within the slice. By calculating the matrix’s eigenvectors and eigenvalues, we ascertain the primary curvatures,
guiding our extraction process along the minimal curvature direction.

3.2 Ridge Field Transformation

To successfully extract the mid-polyline in the following stages, it is imperative to generate a smooth height field
featuring a central ridge, known as a ridge line height field. This transformation must be symmetric, ensuring the ridge
is precisely positioned midway between the segmentation boundaries. Additionally, it should seamlessly cover the
entire breadth of the segmented area, facilitating an accurate and comprehensive extraction of the mid-polyline.

Naïvely, a method that meets these requirements could be a convolution operator that performs a weighted average of
surrounding pixels. This is often achieved through Gaussian smoothing, defined as:

G(x, y, z) =
1

(2πσ2)3/2
e−

x2+y2+z2

2σ2 , (1)

where G(x, y, z) represents the Gaussian kernel, σ denotes the standard deviation (or kernel radius) of the Gaussian
distribution, and (x, y, z) indicate kernel position. Choosing the proper parameters, particularly the standard deviation,
is critical for achieving accurate results. The optimal parameters depend on the width of the segmentation. For wider
segmentations, larger smoothing values are required to ensure a smooth transition across the entire area, preventing
leaving any constant patches. Conversely, narrower segmentations demand smaller values to avoid overly diminishing
the features within the resulting height field.

The challenge of manually setting the accurate parameters—and the need to apply a single parameter set across the
entire volume, which might contain segmentations of varying widths—prompted us to explore a different approach.
Drawing on the understanding that the transformation should depend on the segmentation’s width and the previous
requirements for symmetry and a smooth ridge line height field, we utilize a Signed Distance Field (SDF). SDF assigns
a distance value to each pixel/voxel relative to the nearest boundary. Mathematically, the SDF can be defined as follows:

SDF(x, y, z) = min(din(x, y, z), dout(x, y, z)), (2)

where, din(x, y, z) represents the distance to the inner boundary, while dout(x, y, z) represents the distance to the outer
boundary. This formulation ensures that points lying exactly at the midpoint between the two boundaries have the
highest values. Consequently, it yields a ridge line height field where the highest points are located in the middle
between the two boundaries, irrespective of their distance (i.e., the thickness of the segmentation).

The SDF accurately identifies the center of the segmentation. However, the resolution of the original segmentation
influences the resulting SDF and can introduce a staircasing effect. To counteract this issue, we apply smoothing to the
SDF using the Gaussian kernel. However, to keep the approach parameter-free and adapt to the specific dataset in use,
the smoothing parameters for this step are also derived from the SDF, where the standard deviation is half of the SDF
maximum value σ = SDFmax

2 and the size of the kernel is calculated accordingly to reasonably fit the Gaussian curve
radius = 2σ + 1. Gaussian kernel Gs(x, y, z) in our case is defined as:

Gs(x, y, z) =
1

(2π
(
SDFmax

2

)2
)3/2

e
− x2+y2+z2

2(SDFmax
2 )

2

. (3)

The final smoothed SDF is obtained by convolving, denoted by ∗, the original SDF (Eq. (2)) with the Gaussian
smoothing (Eq. (3)):

SDFsmoothed(x, y, z) = SDF(x, y, z) ∗Gs(x, y, z). (4)

The intended outcome of this process is a uniform ridge line height field across slices. To achieve this, we apply the
procedure to the entire volume, ensuring consistent transitions between slices and eliminating the staircasing effect
typically observed in slice-based 2D processing. This means that both the calculation of the SDF and its subsequent
smoothing are performed in 3D.

For slicing, we consider the axial orientation of the microscopy data, which comes in a stacked format with an up-and-
down direction based on sample preparation. This inherent directionality guides our slicing direction to ensure it aligns
with the natural structure and preparation of the sample. The axial slices are known to have the highest resolution due
to the limited range of the tilting process during the microscopy data acquisition.
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3.3 Mid-Polyline Extraction Algorithm

Having a stack of slices (each in 2D) with a smooth height field, our process begins by computing a line field in each
slice. This involves calculating the Hessian matrix H, which is defined as

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
, (5)

where f represents the height field function, and the elements of the Hessian matrix represent the function’s second-order
partial derivatives with respect to x and y, measuring the rate of change of the gradient of the field, providing the basis
for this calculation.

From these matrices, we identify and extract the eigenvector characterized by

Hv = λv, (6)

corresponding to the smallest eigenvalue denoted by λmin, with vmin representing the corresponding eigenvector. This
eigenvector indicates the direction of minimal curvature within the slice, effectively highlighting the path of least
geometric variation. Tracing this direction from any given point on a ridge line guarantees adherence to the ridge,
thereby maintaining a consistent path. The eigenvalues and eigenvectors of the Hessian matrix H are determined by
Jacobi iteration [53, Chapter 11.1], ensuring a precise mathematical framework for navigating the ridge line height field.

A ridge aligns with the mid-polyline, delineating the trajectory of the mid-surface. Thus, navigating this ridge through a
process informed by the calculated vectors ensures the mid-polyline’s precise alignment with the segmented structure’s
inherent geometry. This principle is crucial, laying the groundwork for subsequent steps aimed at deriving the
mid-surface from an aggregation of mid-polylines.

Upon establishing a vector field of minimal curvature in each slice, our next step involves the meticulous tracing of
the mid-polyline. It is vital to acknowledge that a single slice might feature multiple hill ranges rather than a single
one. This complexity necessitates the delineation of connected components within the segmentation, as demonstrated
in Fig. 4. For each distinct component, the initiation point for mid-polyline tracing is identified by pinpointing the peak
of the smoothed height field—the pixel or voxel exhibiting the maximal value.

With a starting point selected and set as the current point ri, we perform a computationally cheap Euler integration step
to determine the next point ri+1 = (xi+1, yi+1) along our mid-polyline calculated as

ri+1 = ri + h · vi, (7)

where h =
√
2× spacing is the integration step, spacing denotes the distance between slices, effectively defining the

separation between mid-polylines, and vi = (xvi , yvi) is the direction of the mid-polyline at the point ri, corresponding
to the eigenvector with the minimal eigenvalue (see Eq. (6)). We can avoid more accurate but computationally expensive
integration methods since at each step of the integration, the position of the computed point is fine-tuned using the
golden section search method [53, Chapter 10.1]. If the pixel that we are on is not the pixel with the maximum value

DCBA

Fig. 4: Visualization of the connected components identification and mid-polyline tracing on a binary mask slice. (A)
The original binary mask. (B) The connected components within the binary mask, each assigned a unique ID. (C)
Tracing the mid-polyline within these identified connected components. (D) Tracing the mid-polyline on the dilated
connected components, avoiding ending the line prematurely around narrow boundaries.
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A B C D E F

Fig. 5: Visualization of Ridge Field Transformation and Mid-Polyline Extraction Algorithm on a slice: (A) Initial binary
segmentation, showcasing the structure of interest. (B) Signed distance field derived from the initial segmentation. (C)
Ridge line height field (a smoothed version of the signed distance field to ensure a consistent non-zero derivative across
all pixels). (D) Curvature tensor field visualization, derived from the ridge line height field, using superquadric tensor
glyphs [52]. (E) Visualization of normalized eigenvectors associated with the smallest eigenvalue, represented as a
line field. (F) Golden section search optimization: a white polyline depicts a streamline within an eigenvector field
drifting from the ridge, while a green line shows the golden section search perpendicular to the eigenvector, ensuring
the streamline’s alignment with the ridge.

along the maximal principal direction (perpendicular to the current direction of the line field), we move our point
accordingly, as shown in Fig. 5 (F).

Tracing of the mid-polyline continues until it either completes a loop or exits the connected component’s boundary.
When a point exits the connected component and does not make a loop, tracing also proceeds in the opposite direction
from the starting point to trace the entire polyline.

A crucial aspect of the tracing process is the treatment of the vector field as a line field, given that our mid-polyline lacks
inherent direction. Consequently, vectors are devoid of inherent directionality and are flipped as necessary to ensure
continuity. Specifically, we adjust vectors if their orientation deviates by more than 90◦ from the preceding vector [54].

In cases where the boundary is very thin, the next point in the tracing process might fall outside the boundary,
prematurely ending the process. To address this, morphological dilation is applied to the connected components,
increasing their width by one pixel. This process enables a more accurate determination of whether an exit from the
boundary is genuine or a result of its thinness, as demonstrated in Fig. 4. It is important to note that the dilated slice is
used solely to check for the line termination, thus avoiding errors when the boundary is thin. It is not used to calculate
the field and, thereby, does not change the morphological characteristics of the segmentation.

In scenarios characterized by intricate topologies or suboptimal segmentations—such as branching structures uncommon
in biological data but frequently encountered in low-resolution datasets—an additional verification phase is implemented
upon the completion of tracing. This phase assesses whether the tracing comprehensively covered the connected
component or if specific sections, like branches, were inadvertently missed. Detected untraced segments are then
regarded as independent connected components, prompting a re-initiation of the mid-polyline extraction process for
each, employing the same methodology as initially outlined.

Upon thoroughly connecting all points within a single connected component on the slice, the procedure advances to
the next component. This progression continues slice by slice, ensuring all components within a slice are addressed
before moving to the next. Following the extraction of mid-polylines from every slice, the workflow progresses to the
subsequent phase of our method, namely, the triangulation of these extracted mid-polylines (Sec. 3.4). The overall
process from segmentation to the extraction of the mid-polyline is illustrated in Fig. 5.

3.4 Polyline Zipper Algorithm

We developed a triangulation method named the Polyline Zipper Algorithm to transform the extracted mid-polylines into
a mid-surface mesh. This algorithm efficiently utilizes the extracted polylines stacked on parallel planes at equidistant
levels, where each horizontal level corresponds to a single slice of the volumetric data. At each horizontal level, the
mid-polyline comprises either a single continuous line or multiple line segments. The vertices and edges from each pair
of adjacent lines (slices) metaphorically act as the teeth in the mesh generation process, akin to a zipper.

In our zipper-like approach, vertices from adjacent slices are systematically connected, traversing across the two
neighboring polylines and triangulating edges from both sides, resulting in the formation of triangle strips. This method
seamlessly connects all horizontal polylines via vertical edges, ensuring comprehensive connectivity across the resulting
triangular surface mesh.
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valid pair valid pairnon pair

triangle 1 triangle 1

triangle 2 triangle 2

single
triangle

Slicei+1

Slice i ei

ej

v1 v2

v3 v4

Fig. 6: Zipper approach for connecting edges from two neighboring slices. Valid pairs, exemplified by edges ei ∈ Slicei
and en ∈ Slicei+1, form two triangles (Left). The green-colored triangle represents a single triangle formed by a
non-pair edge (center). On the right, the connection of another valid pair of edges is depicted.

The edges contributing to zipper connectivity fall into two categories. Two edges, ei ∈ Si and ej ∈ Si+1, form a valid
pair if the Euclidean distance between their centers, d(ei, ej), is shorter than the distance between ei and any other
edge ek ∈ Si+1, and shorter than the distance between ej and any other edge em ∈ Si. Mathematically, a valid pair is
defined by satisfying the following two conditions:

d(ei, ej) < d(ei, ek), ∀ek ∈ Si+1, (8)

d(ei, ej) < d(em, ej), ∀em ∈ Si. (9)

If ei is found to be closest to ej ∈ Si+1, but ej already has another edge em ∈ Si that is closer than ei, then ei is
considered a non-pair edge. In other words, if the condition of Eq. (8) is satisfied but not that of Eq. (9), then ei ∈ Si is
said to be a non-pair edge. Similarly, if Eq. (9) is satisfied but not Eq. (8), then ej ∈ Si+1 is a non-pair edge.

The four vertices of v1, v2, v3, and v4 of each valid pair of edges are connected to form two triangles (see Fig. 6). To
ensure higher-quality triangles, the diagonal edge is established between vertices v1 and v3, or between v2 and v3,
prioritizing vertices with larger interior. For example, in Fig. 6 (left valid pair), m∠v1v2v4 is greater than m∠v3v1v2
so v2 and v3 are diagonally connected. For the non-pair edge ei ∈ Si, the valid vertex from the nearest edge ej ∈ Si+1

is connected to form a single triangle. Moreover, the method takes into account the distance between slices and the
absence of edges adjacent to the zipper-like connectivity, which aids in the identification and preservation of holes
within the mesh. These unconnected regions are intentional, as they accurately represent voids in the original data,
ensuring the mesh’s integrity and fidelity to the segmented structure.

Triangle strip generation progresses iteratively between two consecutive polylines across the full slice stack. Once done,
the segmented dataset yields a complete mid-surface mesh. The process of the mesh generation from the input stack of
mid-polylines to the final surface mesh is presented in Fig. 9.

Unlike reconstruction algorithms such as simple and scalable surface reconstruction (SSSR) [55] or Delaunay mesh
reconstruction [56], our approach directly connects the previously extracted points in their precise locations, thereby
mitigating the risk of losing the original input geometry’s fidelity. Moreover, our direct triangulation method distinctively
handles potential gaps in the data without the need for specifying extra input parameters, setting it apart from
conventional mesh reconstruction techniques. The output mesh not only meets the targeted accuracy requirements but
also demonstrates superior mesh quality. Furthermore, this mesh is ready for subsequent refinement processes, including
smoothing, simplification, or improvements in mesh quality, according to the specific demands of the application.

4 Experimental Results

In this section, we present the outcomes of applying our approach across various datasets and scenarios, demonstrating
its versatility and efficacy in mid-surface extraction and analysis. Our method’s performance is first evaluated through a
series of surface generation examples in Sec. 4.1, where we present its capabilities and compare them against those of
traditional approaches. Next, we analyzed the mesh quality visually and numerically and compared our mesh quality
with the existing method in Sec. 4.2. Finally, we illustrate the practical applications of our results in two specific
domains: the modeling of biological structures and the estimation of membrane curvature from microscopic data,
presented in Sec. 4.3. The proposed algorithm is implemented as ParaView [57] plugin in C++ and tested on Intel(R)
Xeon(R) Gold 6230R CPU 2× 2.10 GHz with 156 GB RAM and 64 bit Windows 10 operating system.
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CBA
Fig. 7: Evaluation of different surface types highlighting their limitations for our application. (A) The mid-surface as a
result of our method. (B) The ridge surface, generated with the VCG ParaView Plugin [59]. (C) The medial surface as
produced by the VoxelCores [40].

For our surface generation experiments, we used a well-documented segmentation dataset provided by Klein et al. [58],
showing the structural details of SARS-CoV-2. This dataset is particularly useful for showcasing our results because
it includes segmentation of the virus and its host cells, which feature membranes of notable thickness. The data
was initially segmented through automated processes and then refined manually, providing us with high-quality,
reliable data for our initial experiments. We used another dataset from Barad et al. [1], enabling direct comparison
with their methodology. This dataset consists of segmentation volumes highlighting the mitochondrial structure
and contains two distinct labels: the inner and outer mitochondrial membranes. These segmentations were derived
semi-automatically [42] from specimens prepared using cryo-FIB milling and scanned using cryo-ET. This dataset,
despite its complexity beyond our initial experiments, offers a tangible real-world application scenario for our algorithm,
demonstrating its applicability.

4.1 Surface Generation Results

The final outcomes of our algorithm are triangular surface meshes. Therefore, to evaluate our algorithm, we used
different types of data to observe the visual results of our method and confirm its robustness. First, we examine the
applicability of two existing methods for surface extraction. As described in Sec. 2, various methods exist for generating
surface meshes, including medial and isosurfaces. However, they are not directly applicable to our target objectives. To
highlight these differences and shortcomings, we tested two existing approaches, namely the ParaView plugin [59]
for ridge surface extraction and the VoxelCores method [40] for the medial surface extraction. The results are shown
in Fig. 7, where we can see that the mid-surface generated by our method has no specific issue. In contrast, both of the
previous methods introduced unnecessary additional surface portions and redundant mesh elements in the output mesh.
This underscores the necessity and significance of our algorithm in providing robust results.

Next, we evaluated the robustness of our Mid-Polyline Extraction Algorithm. Fig. 8 shows the results of applying the
Mid-Polyline Extraction Algorithm to slices from diverse datasets. These results demonstrate that despite variations in
segmentation thickness and complexity, our algorithm consistently performs well.

We also evaluated our method on various types of data to see the overall performance from input volumetric data to
the final surface mesh. Figs. 1 and 9 show the results of two instances of the SARS-CoV-2 dataset [58], along with
the intermediate results of mid-polylines. The surface meshes generated from the overall dataset [58] are presented
in Fig. 10. We can see a slice of the segmentation and the corresponding extracted mid-surface meshes. The results
contain 25 isolated objects. Most of these objects in the segmented input data are without missing information, as
exemplified by the three models shown in Figs. 1, 7 and 9. However, for some objects, the input segmentation has holes
in the surfaces, which are preserved in the output. These holes might be true gaps in the surface or missing information
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A B C

Fig. 8: Performance of the Mid-Polyline Extraction Algorithm across slices featuring varied topologies. (A) A
circular segmentation, illustrating the algorithm’s efficacy in linking connected loops. (B) A slice containing multiple
components, resulting in the generation of several mid-polylines. (C) A complex segmentation with notably thinner
boundaries. The segmentations were sourced from datasets provided by Klein et al. [58] (A, B) and Barad et al. [1] (C).

A B C

Fig. 9: Mesh generation results. (A) Mid-polylines and the points extracted from slices. (B) The triangle mesh, a result
of the triangulation process with new edges connecting points between the mid-polylines. (C) The final surface mesh
without visible edges to show visual clarity.

due to noise in the data. In either case, our algorithm generates surfaces based on the input data without adding new
details, preserving the holes.

4.2 Assessment of Mesh Quality

Mesh quality is essential for various applications. In this section, we evaluate the quality of the generated meshes and
compare their visual appearance and quantitative metrics with existing methods. First, we describe the mesh quality
metrics used for our analysis, and then we present the results.

Mesh quality metrics used: Following standard quality metrics from the meshing domain [60], we evaluated our
mesh using the triangle quality (Q), whose value varies from 0 (poor-quality) to 1 (good quality) and is calculated as:

Q =
6√
3

A

(p× h)
, (10)

were, A is the area of triangle p is its half-perimeter, and h is the length of its longest edge. The angles of the triangles
are also crucial for assessing quality. Small and large angles can indicate poor quality. Therefore, we computed the
percentage of angles less than 30◦ and greater than 120◦. Similarly, we determined the average value of the minimal
angles θmin in all triangles. Valence refers to the number of adjacent edges to a vertex. While 6 is considered the optimal
valence, we noted the percentage of vertices with valence numbers 5, 6, or 7 V567, which is an important metric [61].
The optimal valence meshes are called regular meshes that are easily remeshed to improve other quality metrics.
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Fig. 10: Mid-surfaces generated from the SARS-CoV-2 dataset [58] overlayed on the original tomogram slice and the
segmentation mask.

Mesh quality results: Tab. 1 presents the numerical mesh quality results, which show our meshes are highly regular
with a higher ratio of v567 vertices. The ratio of poor triangles (lower value of Q, triangles with small or large angles)
is also very small. Let’s look into the mesh quality metrics of the existing recently proposed method in the same domain
for mid-surface meshes i.e., the PSR [43] based approach developed by Barad et al. [1]. Our results show a significant
improvement. Similarly, the visual results of the meshes are shown in Fig. 11, where, if we look into the zoom view, we
can see a significant improvement in mesh regularity and angle quality over the existing method [1]. The generation
of a high-quality mesh is ensured by generating a highly regular pattern of vertices in the mid-polylines and then
triangulating these lines using a quality-aware method by the Polyline Zipper Algorithm. In addition, Tab. 1 includes a
time analysis, indicating that our method demonstrates longer processing times compared to that of Barad et al. [1],
primarily due to the higher number of vertices involved. Still, the times are on the same order of magnitude and remain
within acceptable limits. Additionally, our method has a high potential for acceleration through parallelism. The higher
number of vertices is due to ensuring high accuracy by considering the same resolution as that of the input data, which
defines the inter-slice spacing, thereby affecting the step size in point generation.

Table 1: Quantitative results of mesh quality (PSR* [1] vs. Ours). Q represents triangle quality calculated via Eq. (10).
θmin is the average of the minimal angles of all triangles, and V567 represents the percentage of regular vertices (having
valences 5, 6, or 7). Additionally, the percentages of small and large angles are also shown. The time (in Ours result) is
the time taken for mid-polylines generation + the time taken for meshing. PSR* time is the total time taken.

Method Model #Vertices Qmin Qavg θmin θ < 30◦ θ > 120◦ V567 Time (sec.)
PSR* Fig. 11 (A) 165808 0.00 0.60 31.69 14.00 % 0.77 % 67 % 172
Ours Fig. 11 (A) 289088 0.03 0.78 41.26 0.02 % 0.01 % 89 % 332 + 130
PSR* Fig. 11 (B) 87423 0.00 0.60 31.0 14.88 % 0.91 % 70 % 92
Ours Fig. 11 (B) 150234 0.00 0.79 42.57 0.05 % 0.02 % 92 % 283 + 40
Ours Fig. 9 69939 0.01 0.83 44.56 0.03% 0.01 % 97 % 14 + 12
Ours Fig. 13 (A) 10409 0.23 0.82 43.93 1.09 % 0.0 % 97 % 2 + 1
Ours Fig. 13 (B) 39796 0.04 0.81 44.0 0.02 % 0.01 % 97 % 4 + 4

4.3 Use Case Applications

Mid-surface, once extracted, can be utilized in many important applications. In this section, we showcase two use cases
of the generated mid-surfaces obtained from cryo-ET experiments.

Surface morphometrics: The Surface Morphometrics toolkit [1] was recently developed to quantify the ultrastructure
of biological membranes, including membrane curvature, orientation, and inter-membrane spacing, using mid-surface
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A

B

MidSurfer PSR* 

Fig. 11: Triangulation results: Left: Ours, Right: PSR*, the PSR [43] based approach developed by Barad et al. [1].
The top row shows TE7-IMM, and the bottom row depicts TE7-OMM. In the angle histogram, the x-axis indicates
angle measurements in degrees, while the y-axis shows the frequency of angles for each value. We observe that our
method yields a higher ratio of angles near 60 degrees. The quantitative results are shown in Tab. 1.

models. For this purpose, they utilized the screened PSR method [43] to generate mid-surface meshes, which
the toolkit [1] then uses for various statistical analyses. Here, we aim to apply our mid-surface meshes for these
quantifications and compare them with the method proposed by Barad et al. [1].

Fig. 12 illustrates the results of these quantifications for mid-surfaces generated using MidSurfer compared to those
generated by the Screened PSR-based method [43, 1]. The results are comparable both visually and statistically, with
MidSurfer largely reproducing similar results. This underscores that the meshes produced by MidSurfer yield results
comparable to those of a recently proposed method. The consistent triangle size and high degree of smoothness slightly
reduced high curvature measurements introduced by quantization artifacts in flat membrane segments and generally
improved visualization smoothness.

It is important to note that achieving results similar to those presented in Fig. 12 using the PSR-based method [1]
requires expert users to fine-tune the mid-surface extraction parameters. These results were achieved after the authors
of the technique [1] invested time in fine-tuning mid-surface extraction parameters to achieve the best possible results.
It is highly unlikely that infrequent or new users would achieve similar accuracy. In contrast, MidSurfer employs a
parameter-free approach, providing results with a single click. For such users, our approach is likely to yield superior
mid-surface extraction compared to manually tuning the Barad et al. toolkit [1].

13



MidSurfer: Mid-Surface Extraction from Segmented Volumetric Data A PREPRINT

A

B

C

D

10 12.5
OMM-IMM Distance (nm)

2017.5 2515 22.5

0.001 0.030.005 0.01 0.015 0.02 0.025
Membrane Curvedness (1/nm)

MidSurfer PSR* 

Fig. 12: Morphometric comparison of membrane surfaces generated with MidSurfer vs. Screened PSR. (A) Surface
meshes were generated from segmentations depicting mitochondrial inner and outer membranes observed by cryo-ET,
then quantified with the Surface Morphometrics toolkit [1]. Visual comparison shows similar results overall, with
improved smoothness of quantification for (B) inter-membrane distance and (C) membrane curvedness, demonstrating
the effectiveness of MidSurfer surfaces for downstream quantitative analysis. (D) Histogram analysis of the surface
measurements shows comparable collective quantification of curvedness, but with a smaller high-curvature tail as
a result of reducing artifactual high-curvature measurements. PSR* is the PSR [43] based approach developed by
Barad et al. [1].
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A B

Fig. 13: Modeling results with MesoCraft [62]. (A) SARS-CoV-2 virion with the lipids of the lipid bilayer membrane
placed on both sides of the extracted mid-surface. (B) Lipids of the lipid bilayer membrane only populated on the outer
side of the surface.

Modeling: Mid-surface extraction plays a crucial role in biological modeling and molecular dynamics (MD) sim-
ulations, where accuracy and realism are paramount. These simulations aim to mimic the behavior of biomolecules
and their interactions in a computational environment, providing invaluable insights into biological processes at the
molecular level. A key challenge in MD simulations is accurately representing lipid bilayer membranes, essential for
cell structure and function.

Here, we highlight a use case of mid-surface extraction in biological modeling using MesoCraft, a mesoscale modeling
tool [62]. We demonstrate the applied utility of mid-surface extraction within the domain of biological modeling.
Focusing on the SARS-CoV-2 virion. As illustrated in Fig. 13, we leverage the dataset provided by Klein et al. [58]
for the generation of detailed viral surface depictions. The advantage of mid-surface extraction is evident in the
positioning of various components on the virion’s surface mesh, notably the lipids constituting the lipid bilayer
membrane. It effectively avoids artifacts like membrane shrinking or bloating, ensuring faithful representations of
biological membranes’ behavior. Such accurate modeling was not achievable with other alternatives, such as using the
inner and outer surfaces of the particle membrane.

5 Discussion

We present a technique for mid-surface extraction from volumetric microscopy data of biological structures, addressing
a gap in current methodologies. Unlike previous methods, which often require extensive manual tuning of parameters,
our findings demonstrate that our approach can accurately extract the mid-surface from segmentation data of various
topologies without any user-defined parameterization.

Our research further solidifies the choice of mid-surfaces over more commonly utilized surface representations, a
conclusion we show in Fig. 7. The direct comparison conducted on the same dataset reveals that both isosurfaces and
medial surfaces exhibit critical limitations that undermine their utility for our scenario. Notably, the definitions of
isosurfaces and medial surfaces invariably lead to the generation of artifacts that persist despite exhaustive manual
adjustments of parameters. Furthermore, these methods’ generation of irregular meshes necessitates subsequent
remeshing to attain a usable form for further analysis, presenting a significant procedural inefficiency. These findings
strongly support the use of the mid-surface approach that not only captures the complex geometries of biological
structures but also avoids the common problems associated with more traditional surface representations.

As demonstrated in Fig. 8, our method for mid-polyline extraction shows consistent robustness across various datasets,
with segmentation thickness and topological complexity being the primary variables. The key to achieving robustness
despite varying segmentation thickness lies in our approach of employing the Signed Distance Field (SDF) for obtaining
the ridge line height field as opposed to other smoothing functions.

Our approach to triangulation enables us to generate well-formed triangles consistently since it progresses through the
volume slice by slice, yielding the resulting triangles with the same height. By choosing an appropriate size for the
integration step in mid-polyline extraction, we can achieve nearly equilateral triangles. Furthermore, by imposing a
deliberate limitation on the edge lengths within our triangulation process, we adeptly avoid the unintentional closure of
gaps present in the original segmentation data. These gaps, often critical for the structural and functional understanding
of biological systems, are preserved, thereby maintaining the correctness of the biological model.

The MidSurfer method relies on the input of accurately segmented volumetric data. This prerequisite, while ensuring
high precision in mid-surface extraction, makes our method dependent on segmentation quality. In cases of suboptimal
segmentation, particularly with thin boundaries (e.g., missing labeled voxels, unconnected components where there
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should be continuity or unexpected branches from otherwise smooth boundaries), the efficacy of our approach might be
affected. Addressing this issue could entail developing a sophisticated preprocessing stage, but currently, this adjustment
is left to the discretion of users based on their specific needs.

Additionally, our method in its current form does not cater to the extraction of mid-surfaces from capped structures, i.e.,
segmentations that feature disk-like shapes on the lower or upper bounds without an inner boundary within a single
slice. Defining a mid-polyline in these cases becomes challenging due to the lack of information from adjacent slices,
leading to uncertainty in determining the correct direction for the mid-surface. Initially, our focus was on microscopic
data, which usually do not include these kinds of topologies. This is because the structures we are interested in often
extend beyond a single volume’s thickness, resulting in slices that contain only the interior regions of interest (e.g.,
mitochondria) without the end caps. Consequently, we did not prioritize addressing this specific limitation. However, our
current method automatically identifies and bypasses these structures. Future efforts could delve into multi-dimensional
slicing techniques, using data from orthogonal planes to enhance the extraction process.

In a few cases, MidSurfer failed to reconstruct sections of the surface at the edges of mitochondrial segmentations
( Fig. 12), where the segmentations were thinner; however, these edge regions are routinely ignored during quantification
due to reduced image and segmentation quality caused by the missing wedge [8]. These results broadly show that
MidSurfer models are appropriate for detailed quantitative analysis of biological membrane ultrastructure.

One of the key features integrated into our mid-surface extraction algorithm by design is its inherent capability for
parallelization. While the current implementation operates sequentially, the algorithm’s structure allows for the future
development of a parallelized version that is expected to accelerate processing speeds significantly. This design
consideration is vital for efficiently handling the extensive volumetric datasets commonly encountered in biological
research and, with it, enhancing the algorithm’s practicality for research applications. We have developed and released
a plugin to improve the method’s accessibility and usability. This plugin, which integrates with ParaView [57]—a
widely-used platform for data analysis and visualization—makes it easier for researchers to incorporate our mid-surface
extraction technique into their existing workflows. By making our algorithm available as a plugin, we eliminate the
need for users to navigate through multiple toolboxes, thereby simplifying the research process. This effort to enhance
accessibility is aimed at encouraging broader adoption of our method across different scientific fields, extending its
applicability beyond its initial focus on biological analysis and modeling.

The parameter-free mid-surface reconstructions we generate are able to recapitulate the results obtained by the previous
best-in-class screened PSR approach with parameters optimized by domain experts. Bypassing the need for parameter
optimization will increase the accessibility of midsurface-based analysis approaches for microscopists collecting and
segmenting biological membranes since poor parameter selection in previous approaches can result in surfaces that
are not suitable for quantification. Beyond accessibility, the increased robustness of the results with variables such as
segmentation thickness will improve the degree of automation of pipelines using membrane mid-surface models as a
critical step for analysis.

6 Conclusion

In this work, we have introduced and formally defined a type of surface, denoted as mid-surface, which is an essential
structure for modeling and analysis of 3D microscopy data in structural biology. The concept of mid-surfaces has been
notably absent in the visual computing literature until recently, when domain scientists developed a highly effective
workflow for mid-surface extraction [1], utilizing screened Poisson Surface Reconstruction [43]. Unlike their bespoke
workflow, our approach is grounded in geometric principles and crucially eliminates the need for parametric tuning. It
achieves a quality of output comparable to that of the previous method [1] under optimal parameter configurations. The
mesh produced by our Polyline Zipper Algorithm is characterized by its nearly equilateral triangles, rendering it highly
suitable for a range of analytical and processing tasks. While it might be possible to derive mid-surfaces through the
processing of medial surfaces—by pruning branches—or ridge surfaces—by removing disconnected components—and
then applying smoothing and remeshing techniques, such an approach would be significantly more laborious and less
efficient compared to our streamlined one-click solution.

Admittedly, the success of our method is contingent upon the quality of the initial segmentation. Moving forward,
we aim to develop a mid-surface extraction workflow that facilitates quick iterations between segmentation and
extraction, allowing for visual assessments and iterative refinements to enhance extraction accuracy. Both the mid-
polyline extraction and the zipping algorithms present opportunities for parallelization, suggesting potential for their
development into high-performance techniques that deliver immediate results.

As a forthcoming development, MidSurfer—our cutting-edge mid-surface extraction algorithm—will be integrated into
surface morphometrics workflows within the realm of structural biology, promising substantial contributions to the field.
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With the algorithm accessible as a ParaView plugin, we anticipate its adoption across new application areas, solidifying
its position as a go-to method for mid-surface extraction in diverse disciplines engaged in volume data analysis.
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